Massachusetts Institute of Technology

Laboratory for Electromagnetic and Electronic Systems

Plii

Devices

Circuits

Magnetics

- Investigate the use of greatly increased switching frequencies to miniaturize *lowpower, grid-interface* converters
 - HF frequency range, 3-30 MHz, 10-100x conventional
 - LED driver as an example

PowerChip Team (ARPA-E ADEPT)

This talk describes:

- 1. Application considerations and frequency constraints in this space
- 2. System architecture and topology selection to address these considerations and constraints
- Design and performance of an experimental prototype demonstrating the proposed approach (Operation at 5-10 MHz at > 50 W/in³)

Example: Solid-State Lighting Drivers

■ Today: η ~ 60-90%

power density of commercial designs < 5 W/in³

- □ Switching frequencies < 150 kHz
- Largest components are typically magnetic elements (inductors, transformers)
- Second largest are usually electrolytic capacitors for twice-linefrequency energy storage
- **EMI** filters also take up significant volume
- Power factor / line-frequency energy buffering is also an important consideration
 - EnergyStar: PF of 0.7 (residential) or 0.9 (commercial) is desired but mostly NOT achieved

Motivations for Frequency Increases

- Goals
 - Miniaturization
 - Integration

Commercial LED Driver 100 kHz 21 W 85% eff 4.8 W/in³

- Passive energy storage components (especially magnetics) are the dominant constraint
- Energy storage requirements vary inversely with frequency: C,L proportional to f_{sw}⁻¹
- Volume can be scaled down with frequency
 - But, often scales down slowly with frequency
 - Magnetic core materials especially impact frequency scaling
 - Application constraints are also an important factor

Perreault, et. al., "Opportunities and Challenges in Very High Frequency Power Conversion," APEC 2009

- Loss mechanisms in power electronics limit switching frequencies
 - **Relative importance of different losses depends on power, voltage**
 - □ For this design space, switching loss and core loss dominate

Switching Frequency Solutions

Minimize frequency dependent device loss, switch fast enough to eliminate/minimize magnetic materials, enable PCB integration

ZVS Soft switching

Coreless magnetics in package or substrate

Low-permeability RF magnetic materials

Design Requirements and Device Capabilities

- Application requirements also impose limits on miniaturization
 - e.g., twice-line-frequency energy buffering requirements for interfacing single-phase ac to dc imposes size constraints
- Device & component characteristics impact ability to scale frequency and miniaturize, separate from loss
 - Component parasitics can limit the ability to scale frequency
 - e.g., at high voltage and low power, parasitic capacitance (e.g., device capacitance) imposes constraints

Twice-Line-Frequency Energy Buffering

- <u>|||i7</u>
- Interface between (continuous) dc and single-phase ac requires buffering of twice-line-frequency energy
 - Energy storage requirement is independent of switching frequency

Electrolytic capacitors are energy dense but have temperature and lifetime limits

Added Goal: Achieve energy buffering (for high pf and continuous output) at high power density without electrolytics

- Operation from ac-line-voltage inputs (to 200 V peak) to moderate outputs (~30 V) at low powers (~10-50 W)
 - Resonant circuits at high voltage and low current lead to small capacitance values and large inductor values
 - Increase in frequency reduces both L's, C's
- Minimum practical capacitances can limit frequency
- Design approach must be selected to require minimal magnetics/larger capacitances to enable greater frequency scaling
 - Stacked architectures to reduce subsystem operation voltage
 - Multi-stage/merged conversion techniques
 - Topologies selected for small magnetics size

High-frequency dc-dc conversion block (50-100 V in, ~25-40 V out)

- Resonant transition inverted buck circuit at edge of DCM
- ground referenced switch for HF switching operation (~5-10 MHz)
- Low voltage stress enables operation with significant device capacitance
- Near-minimum magnetics (700-1000 nH inductor for 100 V input at 10's of W)
- ZVS / near ZVS with PWM "on-time" control of output current

HF dc-dc Power Stage

Discrete Prototype V_{in}=100 V, V_{out} = 35 V, $f_{sw} \sim 7.8$ MHz

- Use a "stacked" circuit architecture to enable processing of high input voltage with lower-voltage blocks
 - **Content** Enables scaling of individual circuit blocks to higher frequencies
 - Utilize "resonant-transition inverted buck" conversion to process energy at high frequency
- Buffer line-frequency energy at relatively high voltage with large voltage swing to minimize buffer capacitor size
 - Can use film or ceramic capacitors, eliminating electrolytic capacitors while maintaining high power density
 - This is important because energy buffering depends upon line frequency, and not upon switching frequency

- Two stacked "regulating" converters operating at HF
 - Generate regulated voltages across C_{R1}, C_{R2}
- Second stage combines power (but doesn't need to regulate)
- Stacking is also used for energy buffering
 - ❑ Capacitor C₂ (large) buffers twice-line-frequency energy (with high voltage fluctuation over the ac line cycle)
 - □ Capacitor C₁ (small) enables capacitor stack voltage to track line voltage

HF AC-DC Architecture – Front End

Control buck power stage currents i_1 , i_2 to:

- Provide desired (constant) total output power
- Draw net input current providing high power factor
 - Buffer twice-line-frequency energy on C₂
 - **Given Set 1** Follow a desired waveform over a limited fraction of the line cycle
 - "clipped sine" wave is optimal for highest power factor

Stacked Converter Model Simulation

- Example current and voltage waveforms
 - "Clipped-sine with inverted peak" flattens peak power draw while keeping high power factor
 - Constant output power supplied to load
 - Energy buffered on C₂ with large "triangular" voltage swing

- Two stacked HF buck converters modulate input power across the ac line cycle, causing desired input current waveform and providing energy buffering in C₂
- SC circuit combines the power from converters to supply the load

SC Power Combining Converter

- Interleaved switched capacitor charge transfer circuit
- Delivers power from C_{r1} to C_{r2} (output port)
- Operates at ~30kHz with 50% duty ratio
 - High efficiency operation
- May be expanded:
 - Isolated power combining converters are also possible
 - Universal-input power converters

Prototype Converter (Gen 2)

- 120 Vac input, 35 V dc output, >30 W rating
- Switching frequency ~ 5-10 MHz (varies across operation)
- No electrolytic capacitors!

Prototype Converter Details

- Buffer Capacitor: 14 x 15 uF (X7R 100V, Ceramic TDK)
- EMI filter:
 - □ 4 x 47 uH inductors (1008PS-473KL, coilcraft)
 - 2 x 10 nF capacitors (200V, X7R ceramic, Kemet)
- Regulating converters
 - Inductor: 10 turn Litz wire on Micrometals P68-106 core (800 nH)
 - Switch: GaN HEMT transistor (EPC 2012, 200V 3A, EPC)
 - Diode: Schotky diode (STPS30120, 120V 30 A, ST)
- SC circuit
 - Switch: GaN HEMT transistor (EPC 2012, 200V 3A, EPC)

Experimental Results

- Design successfully demonstrates proposed approach
 - Operation matches models
- High power factor ~0.88 (higher appears possible)
 - 15uF x 14 = 210 uF MLCC ac energy buffer capacitor (works as ~50 uF at 70V): eliminates electrolytic capacitors at modest size
- Efficiency ~92%

EMI Performance

Meets FCC Class B EMI requirements with a small filter

EMI filter not optimized

Measured 'peak' spectrum passes 'quasi-peak' limit

□ (Quasi-peak response is always less than or equal to peak response)

Prototype Power Density

> 50 W/in³ "box" power density

- Displacement power density: 130 W/in³
- Logic / controls, pcb volume and layout can be further optimized and integrated
- ~10X power density improvement over commercial designs (for a ~100x frequency increase)

Summary (1)

<u>|||i7</u>

- Greatly increased switching frequencies offer potential for substantial miniaturization
 - For grid interface, must still manage twice-line-frequency energy buffering
- Appropriate system design methods enable operation at HF and VHF frequencies (3-300 MHz)
 - At grid interface voltages one must overcome both loss and parasitic limits to achieve high frequency operation
- To push up frequencies at high V_{in}, moderate power:
 Use "stacked" architectures to reduce subsystem voltages, Z_o
 Utilize converter topologies with ZVS and low Z_o

Summary (2)

<u>|||i</u>[

- Feasibility and advantages of this approach has been demonstrated in a high-frequency (5-10 MHz) LED driver
 - ~10 x power density for ~100 x frequency increase
 - High power factor (~0.88) without electrolytic capacitors
 - High efficiency (>90%)
 - **EMI** requirements can be met with small filters

	Typ. Commercial	Powerchip
Efficiency	64 - 85 %	92 %
Switching Frequency	57 - 104 kHz	5-10 MHz
Power Factor	0.73-0.93	0.88
Power Density	< 5 W/in ³	<u>> 50 W/in³</u>

ARPA-E & Texas Instruments

ARPA-E ADEPT PowerChip team members

- Co-authors of this work
 - Seungbum Lim
 - David Otten

HF Inverted Buck Converter Control

peak inductor current is controlled by changing switch on-time

Enables continuous modulation of power at high frequency

turn on at ZVS / near ZVS voltage

Stacked Converter Model Simulation

- - P

8

x 10⁻³

8

x 10⁻³

- **Example current and voltage waveforms**
- For desired input power, calculate i_1 and i_2 currents over the ac line cycle (command for the individual dc-dc conversion blocks)
 - Constant output power supplied to load

FCC part 15 subpart B Conducted limits

Class B

Frequency of emission [MHz]	Conducted limit (dBuV)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Class A

Frequency of emission [MHz]	Conducted limit (dBuV)	
	Quasi-peak	Average
0.15 – 0.5	79	66
0.5 - 30	73	60